
CPS311 Lecture: Control Structures

Last revised July 28, 2021
Objectives:

1. To show how HLL control structures can be realized by conditional branches

 Materials:

1. MIPS ISA Handout (they already have)
2. Control Structures Handout and projectable form
3. Projectables
4. Activity

I. Introduction

A. In our first introduction to the execution cycle of a Von Neumann architecture
computer, we met the Program Counter (pc) register - which always holds the
address of the NEXT instruction to be fetched from memory and executed.

1. In the standard fetch/execute cycle, the pc is updated after fetching an
instruction to point to the next successive instruction.

2. In the case of MIPS, this means adding 4 to the pc after each instruction
is fetched, since all MIPS instructions are one word (4 bytes) long.

3. Obviously, if this were the only way to update the pc, this would result in
executing each instruction in the program once, from top to bottom
without any variation - which would not usually be useful.

B. In HLL's such as C/C++ or Java , we typically have a number of constructs
for altering the order of program execution within a procedure - e.g.

if (...) ... else ...  
switch (...) { case ... case ... case ... default ... }  
while (...) ...  
do ... while (...)  
for (...) ...  
goto ... // C/C++ only - not Java

1

C. In machine language, in MIPs and most ISA's, we basically have only two:

1. The equivalent of goto ... - puts a new value into the pc, causing the next
instruction to be fetched from that location. This is called in various
ISA's an UNCONDITIONAL BRANCH or a JUMP. (MIPS j, jr)

2. The equivalent of if (...) goto - puts a new value into the pc if and only if
some condition is true. This is called CONDITIONAL BRANCH or
simply BRANCH. (MIPs beq, bne)

3. Actually, we could make do with only the conditional form - we could
get the effect of an unconditional branch by using a conditional branch
with a condition that we guarantee to be true., such as $0 == $0.

However, most ISA's, including MIPS, provide both forms, because the
unconditional form is simpler and can be made more flexible.

D. In this lecture, we will focus on using MIPS instructions for altering the order
of program execution. However, similar facilities are found in all ISAs.

II.MIPS Conditional Branches

A. Recall from our previous introduction to MIPS that the conditional branch
instructions (beq, bne) compare two registers and branch if the two registers
are equal or not equal as the case may be.

B. Both conditional branches are I format instructions, and look like this

of bits 6 5 5 16
field name op rs rt immediate value
contents op = first second offset

4 for beq reg to reg to (two's complement
5 for bne compare compare signed number)

(where rs and rt now specify the registers to compare)

PROJECT

2

C. Both conditional branches specify the destination of the branch as an offset
relative to the value currently in the PC.

1. The offset is sign-extended to yield a signed number, and then is multiplied
by 4 (because all instruction addresses are a multiple of 4) and then added to
the value currently in he pc, which is by this time the address of the NEXT
instruction to be executed. (So the offset if effect specifies the distance in
instructions - not bytes.)

2. The offset can range from -32678 to +32767. After multiplication by 4, and
adding to the address of the next instruction, this means that conditional
branches can "reach" to an instruction in the range

addr of branch instruction - 131068 .. addr of branch instruction + 131072

D. What about other comparisons?

1. The conditional branch instructions allow you to test if two values are equal or
not equal, but what about comparisons such as <, >, <= or >=?

2. The slt, sltu, slti, and sltiu instructions are used for this.

a) These are R-Format instructions, so they specify three register operands -
two sources and a destination.

b) slt sets rd to 1 if rs < rt, and sets it to 0 if this is not the case. Thus, to
branch to a line labeled "less" if $4 < $5, using $2 as a temporary,, one can
write:

slt $2, $4, $5  
bne less, $2, $0  
 
PROJECT

(1) If $4 is less than $5, $2 is set to 1 by the slt - else it is set to 0.

3

(2)The bne branches if $2 != 0 - which is the case if it was set to 1 - or does
not branch if $2 == 0.

c) sltu is like slt, except that it compares compares two values on the basis
of unsigned comparison, To see why this is important, consider values such
as the bytes 0x0 and 0xff.

(1)Regarded as signed numbers, 0xff is -1, which is < 0. But regarded as
unsigned numbers, 0xff is 255, which is > 0.

(2)Indeed, the distinction between the signed and unsigned forms is always
relevant whenever it is possible that one or both of the values represent
negative numbers, which look like large unsigned values.

d) slti and sltiu are like slt and sltu, except that they compare a register
to a constant rather than another register.

So, for example, to branch to less if the value of $4 is less than 2, one could
write

slti $2, $4, 2  
bne less, $2  
 
PROJECT

3. What about comparisons other than less?

a) At first glance, it appears that mips should also include instructions like sgt
(set if greater than)

b) But, in fact, in keeping with the "reduced instruction set" (RISC) philosophy
the designers of mips only included less than comparisons, because all other
comparisons can be done using this and the right value of beq or bne.

(1) a > b is equivalent to as b < a.

(2) a >= b is equivalent to !(a < b), which requires using using beq instead of
bne after the slt.

4

(3) a <= b is equivalent to ! (b > a), which is equivalent to ! (a < b) - which
means testing for a < b and then using beq instead of bne.

E. An example:

C/C++: if (x == y)  

x ++;  

MIPS Assembly language - assume that x is in $4 and y in $5:

bne $4, $5, notequal
nop
addiu $4, $4, 1

PROJECT

Encoding of the branch instruction - what must the offset value be?

ASK

2 - address of nop + 2 = instruction following addiu

bits 31..26 25..21 20..16 15..0
(6) (5) (5) (16)

field
values
(decimal) 5 4 5 2
(binary) 000101 00100 00101 0000000000000010

= 0001 0100 1000 0101 0000 0000 0000 0010
hexadecimal = 0x14850002

PROJECT

5

III.Translating HLL Control Structures

A. We are now ready to see how some familiar HLL control structures can be
translated into assembly/machine language.

1. To keep our focus on the control structures, we'll write the HLL statements in
terms of CPU registers - actually they would be written n terms of HLL
variables which have to be mapped/loaded into registers, of course.

2. Likewise, we'll specify the target addresses of the branch instructions
symbolically - e.g.

 bne $4, $5, L1  
 ...  
 ...  
L1: some instruction  
 

PROJECT 
 
will mean "put a target address into the branch instruction such that when
it is multiplied by 4 and added to the address of the next instruction it will
cause execution to continue at the instruction labelled L1:

3. Example: Suppose the bne instruction is at address 0x1000, and the instruction
labelled L1 is at 0x100c - then the branch instruction would be encoded as:

bits 31..26 25..21 20..16 15..0  

(6) (5) (5) (16)  
 
field opcode rs rt offset  
values  
(decimal) 5 4 5 2  
 
binary 000101 00100 00101 0000000000000010  
 
= 0001 0100 1000 0101 0000 0000 0000 0010  
hexadecimal = 0x14850002  
 
PROJECT 

6

 
The instruction contains 2 in the offset field because the instruction following
the branch is at 0x1004, and0x1004 + (4 x 2) = 0x100c = desired target.

(This is a computation that the assembler routinely does.)

B. DISTRIBUTE Control Structures Handout

PROJECT HANDOUT

C. Go over patterns in handout.

D. Do activity as a class, projecting results

7

